Recovery of Block-Sparse Representations from Noisy Observations via Orthogonal Matching Pursuit
نویسندگان
چکیده
We study the problem of recovering the sparsity pattern of block-sparse signals from noise-corrupted measurements. A simple, efficient recovery method, namely, a block-version of the orthogonal matching pursuit (OMP) method, is considered in this paper and its behavior for recovering the block-sparsity pattern is analyzed. We provide sufficient conditions under which the block-version of the OMP can successfully recover the block-sparse representations in the presence of noise. Our analysis reveals that exploiting block-sparsity can improve the recovery ability and lead to a guaranteed recovery for a higher sparsity level. Numerical results are presented to corroborate our theoretical claim.
منابع مشابه
Discriminative Training of Structured Dictionaries via Block Orthogonal Matching Pursuit
It is well established that high-level representations learned via sparse coding are effective for many machine learning applications such as denoising and classification. In addition to being reconstructive, sparse representations that are discriminative and invariant can further help with such applications. In order to achieve these desired properties, this paper proposes a new framework that...
متن کاملA sharp recovery condition for sparse signals with partial support information via orthogonal matching pursuit
This paper considers the exact recovery of k-sparse signals in the noiseless setting and support recovery in the noisy case when some prior information on the support of the signals is available. This prior support consists of two parts. One part is a subset of the true support and another part is outside of the true support. For k-sparse signals x with the prior support which is composed of g ...
متن کاملA sharp recovery condition for block sparse signals by block orthogonal multi-matching pursuit
We consider the block orthogonal multi-matching pursuit (BOMMP) algorithm for the recovery of block sparse signals. A sharp bound is obtained for the exact reconstruction of block K-sparse signals via the BOMMP algorithm in the noiseless case, based on the block restricted isometry constant (block-RIC). Moreover, we show that the sharp bound combining with an extra condition on the minimum l2 n...
متن کاملSparse recovery via Orthogonal Least-Squares under presence of Noise
We consider the Orthogonal Least-Squares (OLS) algorithm for the recovery of a m-dimensional k-sparse signal from a low number of noisy linear measurements. The Exact Recovery Condition (ERC) in bounded noisy scenario is established for OLS under certain condition on nonzero elements of the signal. The new result also improves the existing guarantees for Orthogonal Matching Pursuit (OMP) algori...
متن کاملCross Low-Dimension Pursuit for Sparse Signal Recovery from Incomplete Measurements Based on Permuted Block Diagonal Matrix
In this paper, a novel algorithm, Cross Low-dimension Pursuit, based on a new structured sparse matrix, Permuted Block Diagonal (PBD) matrix, is proposed in order to recover sparse signals from incomplete linear measurements. The main idea of the proposed method is using the PBD matrix to convert a high-dimension sparse recovery problem into two (or more) groups of highly low-dimension problems...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1109.5430 شماره
صفحات -
تاریخ انتشار 2011